15 resultados para mesoprous bioactive glasses

em Cochin University of Science


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and optical properties of various free base and metallic phthalocyanine (Pc) doped glass matrix are reported for the first time. Absorption spectral measurements of H2Pc, MnPc, NiPc, CoPc, CuPc, MoOPc, ZnPc and FePc doped borate glass matrix have been made in the 200–1100 nm region and the spectra obtained are analyzed in the 2.1–6.2 eV region to obtain the optical band gap (Eg) and the width of the band tail (Et). Other important optical and physical parameters viz. refractive index (n), molar extinction coefficient ("), density (½), glass transition temperature (Tg), molecular concentration (N ), polaron radius (rp), intermolecular separation (R), molar refractivity (Rm) are also reported

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and optical properties of various free base and metallic phthalocyanine (Pc) doped glass matrix are reported for the first time. Absorption spectral measurements of H2Pc, MnPc, NiPc, CoPc, CuPc, MoOPc, ZnPc and FePc doped borate glass matrix have been made in the 200–1100 nm region and the spectra obtained are analyzed in the 2.1–6.2 eV region to obtain the optical band gap (Eg) and the width of the band tail (Et). Other important optical and physical parameters viz. refractive index (n), molar extinction coefficient ("), density (½), glass transition temperature (Tg), molecular concentration (N ), polaron radius (rp), intermolecular separation (R), molar refractivity (Rm) are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physical and optical properties of various free base and metallic phthalocyanine (Pc) doped glass matrix are reported for the first time. Absorption spectral measurements of H2Pc, MnPc, NiPc, CoPc, CuPc, MoOPc, ZnPc and FePc doped borate glass matrix have been made in the 200–1100 nm region and the spectra obtained are analyzed in the 2.1–6.2 eV region to obtain the optical band gap (Eg) and the width of the band tail (Et). Other important optical and physical parameters viz. refractive index (n), molar extinction coefficient ("), density (½), glass transition temperature (Tg), molecular concentration (N ), polaron radius (rp), intermolecular separation (R), molar refractivity (Rm) are also reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis summarizes the results on the growth and characterisation of thin films of HA grown on TiAl6V4 (Ti) implant material at a lower substrate temperature by a combination of Pulsed laser deposition and a hydrothermal treatment to get sufficiently strong crystalline films suitable for orthopaedic applications. The comparison of the properties of the coated substrate has been made with other surface modification techniques like anodization and chemical etching. The in-vitro study has been conducted on the surface modified implants to assess its cell viability. A molecular level study has been conducted to analyze the adhesion mechanism of protein adhesion molecules on to HA coated implants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Department of Instrumentation, Cochin University of Science and Technology

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Antioxidants are substances that when present at low concentrations compared to that of an oxidisable substrate significantly delays or inhibits oxidation of that substrate in food products or in living systems. Antioxidants are either endogenous to the body or derived from the diet. Several types of synthetic antioxidants like BHT, BHA, TBHQ etc. are also used in the food industry. However, findings and subsequent publicity has fostered significant consumer resistance to the use of synthetic food additives as antioxidants, colourants etc. and therefore food industry is in search of potential natural antioxidants from edible sources.The major dietary sources of antioxidant phytochemicals are cereals, legumes, fruits, vegetables, oilseeds, beverages, spices and herbs. In the present study, we have focused on rice bran and its byproducts. Rice is one of the oldest of food crops and has been a staple food in India from very ancient times. It is also the staple food for about 60% of the world's population. Rice bran is a byproduct of the rice milling industry and is a potential commercial source of a healthy edible oil viz. rice bran oil and a variety of bio-active phytochemicals.Defatted rice bran (DRB), a byproduct of rice bran oil extraction, is also a good source of insoluble dietary fiber, protein, phytic acid, inosito I, vitamin B and a variety of other phytochemicals. Though the antioxidant potential of DRB has been demonstrated, it still remained a relatively unexplored source material, which demanded further investigation especially with regard to its detailed phytochemical profile leading to practical application. The focus of the present investigation therefore has been on DRB primarily to establish its phytochemical status and feasibility of using it as a source of bio-active phytochemicals and natural antioxidants leading to value addition of DRB otherwise used as cattle feed. To gain a better understanding of the value of rice bran as a source of phytochemicals, five popular rice varieties of the region viz. PTB 50, PTB 39, PTB 38, JA Y A, and MO 10 and a wild variety (oryza nivara) that is mainly used for medicinal applications in traditional ayurvedic system were characterized along with commercial samples of rice bran. The present study also explains the feasibility of a process for the extraction, enrichment, and isolation of antioxidant compounds from DRB. The antioxidant potential of the extracts were evaluated both in bulk oils and in food relevant model emulsions, using standard in vitro models. Radical scavenging effects, indicative of possible biological effects, were also evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, we present the results of our investigations on the photoconducting and electrical switching properties of selected chalcogenide glass systems. We have used XRD and X-ray photoelectron spectroscopy (XPS) analysis for confinuing the amorphous nature of these materials and for confirming their constituents respectively.Photoconductivity is the enhancement in electrical conductivity of materials brought about by the motion of charge carriers excited by absorbed radiation. The phenomenon involves absorption, photogeneration, recombination and transport processes and it gives good insight into the density of states in the energy gap of solids due to the presence of impurities and lattice defects. Photoconductivity measurements lead to the determination of such important parameters as quantum efficiency, photosensiti\'ity, spectral sensitivity and carrier lifetime. Extensive research work on photoconducting properties of amorphous semiconductors has resulted in the development of a variety of very sensitive photodetectors. Photoconductors are finding newer and newer uses eyery day. CdS, CdSe. Sb2S3, Se, ZnO etc, are typical photoconducting materials which are used in devices like vidicons, light amplifiers, xerography equipment etc.Electrical switching is another interesting and important property possessed by several Te based chalcogenides. Switching is the rapid and reversible transition between a highly resistive OFF state, driven by an external electric field and characterized by a threshold voltage, and a low resistivity ON state, Switching can be either threshold type or memory type. The phenomenon of switching could find applications in areas like infonnation storage, electrical power control etc. Investigations on electrical switching in chalcogenide glasses help in understanding the mechanism of switching which is necessary to select and modify materials for specific switching applications.Analysis of XRD pattern gives no further infonuation about amorphous materials than revealing their disordered structure whereas x-ray photoelectron spectroscopy,XPS) provides information about the different constituents present in the material. Also it gives binding energies (b.e.) of an element in different compounds and hence b.e. shift from the elemental form.Our investigations have been concentrated on the bulk glasses, Ge-In-Se, Ge-Bi-Se and As-Sb-Se for photoconductivity measurements and In-Te for electrical switching. The photoconducting properties of Ge-Sb-Se thin films prepared by sputtering technique have also been studied. The bulk glasses for the present investigations are prepared by the melt quenching technique and are annealed for half an hour at temperatures just below their respective glass transition temperatures. The dependence of photoconducting propenies on composition and temperature are investigated in each system. The electrical switching characteristics of In-Te system are also studied with different compositions and by varying the temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical absorption studies of free base and rare earth incorporated phthalocyanine doped borate glass matrix are reported for the first lime. The absorption spectra recorded in the UV- VIS region show two well defined absorption bands of phthalocyanine (Pc) molecule, namely the Soret band (B) and the Q band. The Q band always shows its characteristic splitting in all the doped glass matrices and the intensities of these components are found to vary from one Pc to another. Some of the important optical parameters, namely optical absorption coefficient (a), molar extinction coefficient (ε), absorption cross section (σa), oscillator strength (f), electric dipole strength (q2), absorption half bandwidth (Δλ) of the principal optical transitions have also been evaluated. Moreover, the spectral dependence of refractive index (n) and thereby the optical dielectric constant (ε) on wavelength yielded values of carrier concentration to effective mass ratio (N/m*) of the phthalocyanine molecule in the present glassy systems. Optical band gap (Eg) and width of the band tail (Et) are computed and their variations among the prepared samples are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study is aimed at the isolation and characterization of glycosaminoglycans from selected tissues of two commercially important species of cephalopods;squid,Loligo duvauceli and cuttlefish,Sepia pharaonis,keeping in view of the aforementioned benefits on the utilization of waste generated during processing.The cephalopod GAGs may also be expected to have an effect on various physiological functions based on the results obtained from GAGs from other sources.In addition,knowledge of the chemical structure of macromolecules that constitute major components of extracellular matrix(ECM) will be helpful in understanding their interactions with other matrix components.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aquatic ecosystem in the south west coast of India is noted for its diversity of habitats. Very often these environments turn bluegreen when the bloom of bluegreen algae (cyanobacteria) appear consequent to eutrophication. This phenomenon occursin these habitats one after the other or simultaneously. This conspicuousness make one curious enough to know more about these nature’s gift bestowed upon mankind. While persuing the literature on the magnificent flora) it is understood that it may provide food fertilizer, chemicals and bioactive substances. These bioactive substances are likely to be involved in regulating natural populations and are potentially useful as biochemical tools and as herbicidal or biocontrol agents. The role of cyanobacteria in the aquatic food chain and contribution in abatement of heavy metals from the natural environment are well documented. Considering the manifold utilization of the flora and their significance in the food chain, the present investigation has been undertaken

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dielectric and elastic properties are of considerable significance to the science and technology of matter in the solid state. The study of these properties give information about the magnitude of the forces and nature of the bonding between the atoms. Our aim has been to investigate systematically the effect of doping of an appropriate element on the elastic and dielectric properties of selected dielectric ceramics and oxide glasses. These materials have got wide technological applications due to their interesting electrical, optical, thermal and elastic behaviour. Ultrasound propagation and capacitance measurement techniques have been employed for the systematic investigation of the elastic and dielectric properties of selected number of these materials. Details of the work done and results obtained are presented in this thesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tellurite glasses are photonic materials of special interest to the branch of optoelectronic and communication, due to its important optical properties such as high refractive index, broad IR transmittance, low phonon energy etc. Tellurite glasses are solutions to the search of potential candidates for nonlinear optical devices. Low phonon energy makes it an efficient host for dopant ions like rare earths, allowing a better environment for radiative transitions. The dopant ions maintain majority of their individual properties in the glass matrix. Tellurites are less toxic than chalcogenides, more chemically and thermally stable which makes them a highly suitable fiber material for nonlinear applications in the midinfrared and they are of increased research interest in applications like laser, amplifier, sensor etc. Low melting point and glass transition temperature helps tellurite glass preparation easier than other glass families. In order to probe into the versatility of tellurite glasses in optoelectronic industry; we have synthesized and undertaken various optical studies on tellurite glasses. We have proved that the highly nonlinear tellurite glasses are suitable candidates in optical limiting, with comparatively lower optical limiting threshold. Tuning the optical properties of glasses is an important factor in the optoelectronic research. We have found that thermal poling is an efficient mechanism in tuning the optical properties of these materials. Another important nonlinear phenomenon found in zinc tellurite glasses is their ability to switch from reverse saturable absorption to saturable absorption in the presence of lanthanide ions. The proposed thesis to be submitted will have seven chapters

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emergence of drug resistance among pathogenic bacteria to currently available antibiotics has intensified the search for novel bioactive compounds from unexplored habitats. In the present study actinomycetes were isolated from two relatively unexplored and widely differing habitats such as mountain and wetlands and their ability to produce antibacterial substances were analyzed. Pure cultures of actinomycetes were identified by morphological and biochemical tests. Various genera of actinomycetes encountered included Nocardia, Pseudonocardia, Streptomyces, Nocardiopsis, Streptosporangium, Micromonospora, Rhodococcus, Actinosynnema, Nocardiodes, Kitasatosporia, Gordona, Intrasporangium and Streptoalloteichus. The frequency of occurrence of each genus was found to vary with sample. About 47% of wetland isolates and 33% of mountain isolates were identified as various species of Nocardia. The isolated strains differed among themselves in their ability to decompose proteins and amino acids and also in enzyme production potential. Antibiotic activities of these actinomycetes were evaluated against 12 test pathogenic bacteria by well diffusion method using agar wells in glycerol-yeast extract agar. About 95% of actinomycete isolates from wetland ecosystem and 75% of highland isolates suppressed in different degrees the growth of test pathogens. Relatively high antibacterial activity among these isolates underlined their potential as a source of novel antibiotics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mangroves are specialised ecosystems developed along estuarine sea coasts and river mouths in tropical and subtropical regions of the world, mainly in the intertidal zone. Hence, the ecosystem and its biological components is under the influence of both marine and freshwater conditions and has developed a set of physiological adaptations to overcome problems of anoxia, salinity and frequent tidal inundations. This has led to the assemblage of a wide variety of plant and animal species of special adaptations suited to the ecosystem. The path of photosynthesis in mangroves is different from other glycophytes. There are modifications or alterations in other physiological processes such as carbohydrate metabolism or polyphenol synthesis. As they survive under extreme conditions of salinity, temperature, tides and anoxic soil conditions they may have chemical compounds, which protect them from these destructive elements. Mangroves are necessarily tolerant of high salt levels and have mechanisms to take up water despite strong osmotic potentials. Some also take up salts, but excrete them through specialised glands in the leaves. Others transfer salts into senescent leaves or store them in the bark or the wood. Still others simply become increasingly conservative in their water use as water salinity increases. A usual transportation or biosynthetic path as other plants cannot be expected in mangrove plants. In India, the states like West Bengal, Orissa, Andhra Pradesh, Tamil Nadu, Andaman and Nicobar Islands, Kerala, Goa, Maharashtra, and Gujarat occupy vast area of mangroves. Kerala has only 6 km2 total mangrove area with Rhizophora apiculata, Rhizophora mucronata, Bruguiera gymnorrhiza, Bruguiera cylindrica, Avicennia officinalis, Sonneratia caseolaris, Sonneratia apetala and Kandelia candal, as the important species present, most of which belong to the family Rhizophoraceae.Rhizophoraceae mangroves are ranked as “major elements of mangroves” as they give the real shape of this unique and interesting ecosystem and these mangrove species most productive and typical characteristic ecosystem of World renowned. It was found that the Rhizophoraceae mangrove extracts exhibit several bioactive properties. Various parts of these mangroves are used in ethnomedicinal practices. Even though extracts from these mangroves possess therapeutic activity against humans, animal and plant pathogens, the specific metabolites responsible for these bioactivities remains to be elucidated. Various parts of these mangroves are used in ethnomedicinal practices. There is a gap of information towards the chemistry of Rhizophoraceae mangroves from Kerala. Thorough phytochemical investigation can achieve the validity of ethnomedicines as well as apply the use of mangrove plants in the development of new drugs. Such studies can pave a firm base for their use in biomarker and chemotaxonomic studies as well as for the better management of the existing mangrove ecosystem. In this study, the various chemical parameters including minerals, biochemical components, bioactive and biomarker molecules were used to classify and assess the possible potentials of the mangrove plants of the true mangrove family Rhizophoraceae from Kochi.